go to previous page   go to home page   go to next page

Answer:

paren

10   0  20
20  40  10
 0  20  10
paren paren

-2   2 
1   1
2  -2
paren = 10 paren

1   0   2
2   4   1
0   2   1
paren paren

-2   2 
 1   1
 2  -2
paren
= 10 paren

2  -2
2   6
4   0
paren = 20 paren

1  -1
1   3
2   0
paren

Associative

In the following, multiply the first two matrices together. Click on the = to check your result. Then multiply the result with the third matrix.

Problem 
paren paren
 
1  -1
2   3 
paren paren
 
-2  1
 0  2
paren paren paren
 
-1  0
 1  1 
 
paren
Partial Result 
paren paren paren

-1  0
 1  1
paren
Result  
paren paren

Now do the problem again, but this time start with the last two matrices.

<
Problem 
paren

 1  -1
 2   3
paren paren paren

 -2  1
  0  2 
paren paren

 -1  0
  1  1
paren paren
Partial Result 
paren

 1 -1
 2  3
paren paren paren
Result  
paren paren

The final answer is the same for both ways of doing the problem. This demonstrates that matrix multiplication is associative:

(AB)C  =  A(BC)

Of course, the inner dimensions of A and B must be the same, and the inner dimensions of B and C must be the same. Usually a product of three matrices is written ABC.


QUESTION 11:

Say that   A  5×5  B ?×?3×4  =  ?×?

What are the dimensions of B and D ?


go to previous page   go to home page   go to next page