What do you suppose happens when the vectors are in opposite directions, such as (1, 0)T and (-1, 0)T ?
The magnitude of the dot product is negative.
Here is a sampling of bu and the dot product with au = (1.0, 0)T for various angles.
Angle | b | Result | Picture |
---|---|---|---|
000° | (1.000, 0.000)T | 1.000 | ![]() |
015° | (0.966, 0.259)T | 0.966 | ![]() |
030° | (0.866, 0.500)T | 0.866 | ![]() |
045° | (0.707, 0.707)T | 0.707 | ![]() |
060° | (0.500, 0.866)T | 0.500 | ![]() |
075° | (0.259, 0.966)T | 0.259 | ![]() |
090° | (0.000, 1.000)T | 0.000 | ![]() |
105° | (-0.500, 0.866)T | -0.259 | ![]() |
120° | (-0.500, 0.866)T | -0.500 | ![]() |
135° | (-0.707, 0.707)T | -0.707 | ![]() |
150° | (-0.866, 0.500)T | -0.866 | ![]() |
165° | (-0.966, 0.259)T | -0.966 | ![]() |
180° | (-1.000, 0.000)T | -1.000 | ![]() |
The bu in each case is the unit vector represented by (cos θ, sin θ )T .
What do you imagine is the range of values for the dot product of the two unit vectors, au · bu ?